
Technical Debt: An Anycast Story

Tom Strickx
Cloudflare, London

HKNOG 7.0
Hong-Kong



Tom Strickx
● Network Hooligan at Cloudflare (Network Software Engineer)
● Contributor at NAPALM Automation and Saltstack
● https://tom.strickx.com

Ichabond

@tstrickx
2

https://napalm-automation.net/
https://github.com/saltstack/salt/
https://tom.strickx.com
https://github.com/Ichabond
https://twitter.com/tstrickx


● Anycast introduction
● Our technical debt
● Configuration changes using Saltstack
● Change monitoring

Agenda

3



4



Our Anycast Network

● ± 250 IPv4 prefixes 

● ± 15 IPv6 prefixes

● Announced globally (150+ locations)

5



6



Technical Debt

7



Technical Debt

● Few Tier 1 transit providers

● Prepends to steer traffic to proper location (± 10 PoPs)

● Eventually normalized globally

History

8



Technical Debt
Issues

9



Technical Debt

● Authoritative DNS targeted (eg. 173.245.58.0/24)

● Single location attracts all traffic due to missing prepends

Incidents

10



Technical Debt

● RPKI

● Shorter AS-path

● /24 everything

Solutions

11



Technical Debt

● Staggered deployment (6 stages)

● As quickly as possible globally

● Extensive internal and external monitoring

Resolution

12



Technical Debt
Change

13



Global Rollout

14



Global Rollout

● Automation and orchestration

● Open source

● Python, Jinja2 & YAML

● Highly scalable

● Very fast

● Vendor neutral

● Across our fleet: servers and network equipment

Saltstack

15



Global Rollout

● Make sure we know what we’re changing

● Adjust configuration if needed

● Add confidence

Prechecks

16



Global Rollout
Actual Change

17

● All in Python (config generation)

● Both Junos and EOS 

● Concurrently

● Done globally within

 ± 2 minutes



Global Rollout

● Internal metrics

● External metrics

Metrics

18



Global Rollout

● Stored in Clickhouse or Prometheus

● Visualized with Grafana

● Flows

● SNMP data

● Request data

Internal metrics

19



Global Rollout

● Developed at Yandex

● Column-oriented DBMS

● Open source

● 3 PB on disk

● 100 Gbps insertion

Clickhouse

20



Global Rollout

● Stores flow data

● Stores request data

Clickhouse

21

Clickhouse query

Result



Global Rollout

● Time-series database

● Monitoring platform

● Open source

Prometheus

22



Global Rollout

● Prepend length

● PromQL

Prometheus

23

Begin rollout Rollout complete

All external looking-glasses



Global Rollout

● Analytics

● Time-series visualization

● Multitude of plugins

● Open source

Grafana

24



Internal Metrics

● RPS / colo

● Traffic shift during change

● Real-time information

25

Global Rollout



Global Rollout

● Stored in Prometheus or raw ingestion

● Visualized with Grafana

● RIPE Atlas

● Looking glasses

External metrics

26



Global Rollout

● Global probes

● Ping, Traceroute, DNS query

● REST API

● Determine routing before and after change

RIPE Atlas

27

https://atlas.ripe.net/docs/api/v2/manual/overview/


Global Rollout

● Routeviews

● AS57335 (http://dfz.watch/) looking glasses (Thanks Aaron!)

● IX looking glasses (We need more! With APIs!)

● Collect / scrape into Prometheus

● Visualize with Grafana

Looking Glasses

28

http://dfz.watch/
https://twitter.com/dfzwatch


Global Rollout

● Scrape metrics

● BeautifulSoup for scraping

● Aggregate data

Looking Glasses

29



Global Rollout

● Insert into Prometheus

● python_client

Looking Glasses

30

https://github.com/prometheus/client_python


Global Rollout
Looking Glasses

31

● Grafana visualization

● Track change in

near-real-time



Global Rollout
Combined

32

● Traffic

● Prepends

Perturbance

Delay



Global Rollout
Takeaways

33



Global Rollout

● Negligible customer impact

● Route fluctuations for ± 2 minutes

● Took 1 hour to complete change, 2 days to prepare

● Instantly detected and resolved minor issues

● Heavily reliant on open source tooling and community

Takeaways

34



Questions

?
tstrickx@cloudflare.com

35

mailto:tstrickx@cloudflare.com

