
© Copyright 2018 Opengear, Inc. www.opengear.com 1

Choosing an orchestration tool: Ansible and Salt

Vincent Boon
Opengear

2

Introduction

What is Orchestration, and how is it different from Automation?

• Automation involves codifying tasks like configuring a webserver, or
upgrading a software package, so that they can be performed quickly, and
without error.

• Orchestration involves codifying processes like deploying an application,
where many tasks may need to take place on disparate devices.

• Traditionally been part of the Software and Ops world, but more and more
applicable to network devices.

3

Introduction

This talk is mostly going to focus on the automation component of
Orchestration.

The tools discussed are capable of both; my aim today is to give you enough of
an introduction that you can set aside some time to spin up a VM and try
them out.

Each of the tools have their own jargon, but once you get past that, you can
understand how they work, and make a choice based on your
requirements.

4

Introduction

5

Changes in Network Orchestration

In 2018, Ansible gets a lot of airtime for network orchestration, more than
Puppet and Chef.

Salt is also heavily promoted by companies like Cloudflare

This talk will focus on Ansible and Salt:

- What does their architecture look like.

- What comes for free vs what you pay for.

- How they use NAPALM.

6

What is NAPALM?

Network vendors love automation/orchestration tools

- They build a module for configuring their devices for
Puppet/Chef/Ansible/Salt

- Write a whole bunch of whitepapers demonstrating its use

- Customer writes a whole bunch of configuration using the module

- Customer goes to evaluate another vendor

l The module is different :(

- Enter NAPALM (Network Automation and Programmability Abstraction
Layer with Multivendor support).

7

What is NAPALM?

NAPALM is a Python library that can provide a unified API to a number of

different router vendors.

The napalm-ansible module provides a way to call the NAPALM API inside

Ansible Playbooks

NAPALM itself is integrated inside Salt from version 2016.11.0 (Carbon)

(driven by Cloudflare)

8

What is NAPALM?

Supported Network Operating Systems are:

• Arista EOS

• Cisco IOS, IOS-XR, NX-OS

• Fortinet FortiOS

• IBM

• Juniper JunOS

• Mikrotik RouterOS

• Palo Alto NOS

• Pluribus NOS

• VyOS

9

What is NAPALM?

It isn’t magic:

• In general, you’re still going to be writing configuration templates for your
different vendors.

• Template then gets merged into running config, and can be checked for
diffs.

• Power comes from the consistent “getters” API.

• Allows “verifiers” to be written to check the bits of config you care about

• Work continues on generalized configuration templates for true cross-
platform configuration, as well as Netconf and YANG support.

10

Ansible

Developed by Redhat, written in Python

Billed as an “masterless and agentless” automation/orchestration tool

• Uses SSH as transport, authentication is generally done using SSH keys

• Ships Python modules to the target device, which are then executed.

• When being used with ansible-napalm, transport will vary based on the device being
managed.

• Can log to a variety of log services

• Integrates with Ansible Tower to provide more enterprise features

– Acts a central server for Ansible

– WebUI/REST API/Dashboard

11

Ansible

Ansible uses the concept of a playbook to define a series of steps (or “plays”) that map
a series of execution steps (or tasks) to a group of hosts.

These playbooks are written in YAML.

Each task (which calls an Ansible module) should be idempotent – running it many times
will give the same result, and the task definition should contain enough detail to
allow it to also be used to check that the task has been carried out successfully.

Handlers can also be defined for tasks that may need to be called only once after a
number of operations. For example, if a number of tasks are concerned with
changing webserver configurations, then the webserver only needs to be restarted
once at the end.

12

Ansible

In Ansible, hosts are defined inside an inventory. The inventory is often a
static file, but it can be dynamic when that makes sense (for managing
Docker containers, or VMs).

The inventory allows administrators to groups hosts based on their role
(webservers, load-balancers, border-routers etc), as well as associating
variables with individual or groups of host. These variables can be
referenced inside the Playbooks to customize the particular task for the
host.

Variables can also be retrieved at application time from the hosts. These
variables are called “Facts”

13

Ansible – Free vs $$

Out of the box, Ansible is designed around the user running Ansible playbooks
to push and verify configuration.

• Very basic automation of playbook scheduling is included (ansible-pull +
cron)

• For more, this is where Ansible Tower comes in

l Free Tier, then 2 ($$) Tiers that come with more features and
support

14

Salt

Developed by SaltStack, written in Python

The architecture is generally based around a central server (salt-master), with
agents called salt-minions running on the devices under management. It
can be run in a masterless mode, but this is not how its normally used.

• For devices that can’t run an agent, a “proxy-minion” process can be run
on a server, which then communicates with the device using its native
protocols.

• Communications between the server and the minions uses the ZeroMQ
message bus by default.

• All operations are scheduled and logged by the central server. Minions
receive commands from the server, and run these asynchronously. Results
are push back to the server via the message bus.

15

Salt

Salt has many types of modules, but for our example, we’ll examine two:
execution modules, and state modules.

Execution modules are used to perform actions

State modules use execution modules to make a device conform to the desired
state. This allows the user to define a desired state for a particular
segment of configuration in a declarative fashion.

Execution modules are generally run as once-off commands, while state
modules are more like Ansible Playbooks. Execution modules do however
return their results as JSON data, so their results can be parsed and used in
other workflows

16

Salt Architecture

The state module uses state definitions, which are written as SLS (SaLt State)
files. They can be written in many languages, but the default is YAML (like
an Ansible playbook)

These are stored centrally on the master, in a file server that is referred to as
the file_roots, while other data (such as variables) are stored in a data
store known as the Salt Pillar.

The salt-minions retrieve these state file definitions, and other items (like
variable definitions) from the Salt Pillar and the file server over the central
message bus.

17

Salt Architecture

Like Ansible, variables can be defined locally in the state file, and can also be
retrieved from the devices under management. Salt calls these variables
“grains”. However, best practice with Salt is to keep variables separate
from state information, by storing them in the Salt Pillar. This keeps logic
(state) separate from data (variables).

Rather that specifying the devices that a state or action applies to in the state
definition, Salt allows that to be specified during application time, using
static data stored inside the pillar, as well as grains that are retrieved from
the managed devices.

18

Salt

This description barely brushes the surface of what Salt can do.

It is more complex than Ansible:

• More moving parts, and options compared to Ansible Playbooks

• Steeper learning curve

• Allows more complex workflows than out-of-the-box Ansible

19

Salt – Free vs $$

SaltStack does have an Enterprise version that adds a number of extra
features, but the OSS release allows a more sophisticated Automation and
Orchestration setup than Ansible.

However, this comes at the cost of the extra effort for setup.

20

Conclusion

I don’t know your requirements, you do.

There are good communities around both products.

You don’t need to do everything right now

Watch some vidoes and try out some examples!

Ansible: https://www.youtube.com/watch?v=9TFlc-ekRPk

Salt: https://www.youtube.com/watch?v=AqBk5fM7qZ0

21

Further Information

Ansible + Napalm:

https://pynet.twb-tech.com/blog/automation/napalm-ios.html

Salt + Napalm:

https://mirceaulinic.net/2016-11-17-network-orchestration-with-salt-and-
napalm/

