
1

Re-engineering the DNS

– One Resolver at a Time

Paul Wilson

Director General

APNIC

…channeling Geoff Huston

Chief Scientist

In this presentation

• I’ll talk about the DNS, and the root server infrastructure in

particular

• And some recent initiative by APNIC to try and improve the

situation

2

The Structure of the Domain Name System

The Domain Name System (DNS) is a distributed database representing

the hierarchical structure of domain names.

. (“root”) zone

com. zone

example.com. zone

www.example.com.

www.example.com.

The Structure of the Domain Name System

. (“root”) zone

com. zone

example.com. zone

www.example.com.

Each zone contains a list of defined labels

Labels can either reflect a delegation to a

subordinate zone or they can be a terminal label

that contains attribute information associated

with that label

Delegation of the label “com”

Delegation of the label “example”

terminal label “www”

www.example.com.

The Domain Name System (DNS) is a distributed database representing

the hierarchical structure of domain names.

DNS Name Servers

• Every DNS zone has a set of authoritative servers that can

answer queries for names in that zone

• Every DNS query starts by querying the Root Zone

• The Root Zone is just another zone, and the authoritative

servers for that zone are called “Root Servers”

– There are 13 distinct Root Server names

– Limited so far by IPv4 UDP packet size limit

5

Resolving a DNS Name

Your resolver needs need to ask a DNS server for the zone that contains the

terminal label for the associated information (resource record) associated with the

DNS name

But…

Where exactly is the zone available?

Who are the servers?

So resolvers discover this information by performing a top-down iterative search…

Resolving a DNS Name

Qname: www.example.com.?
. (“root”) zone server

Response: servers for the com. zone

Resolving a DNS Name

Qname: www.example.com.?
. (“root”) zone server

Response: servers for the com. zone

com. zone serverQname: www.example.com.?

Response: servers for the example.com. zone

Resolving a DNS Name

Qname: www.example.com.?
. (“root”) zone server

Response: servers for the com. zone

com. zone serverQname: www.example.com.?

Response: servers for the example.com. zone

example.com. zone server

www.example.com.

terminal label

Qname: www.example.com.?

Response: Resource records for terminal label

Resolving a DNS Name

Qname: www.example.com.?
. (“root”) zone server

Response: servers for the com. zone

com. zone serverQname: www.example.com.?

Response: servers for the example.com. zone

example.com. zone server

www.example.com.

terminal label

Qname: www.example.com.?

Response: Resource records for terminal label

Every DNS resolution

procedure starts with a

query to the root!

How to be bad

If an attacker could prevent the root servers

from answering DNS queries then the entire

Internet will suffer!

11

Every DNS resolution

procedure starts with a

query to the root!

Caching in the DNS

• Name servers use caches to remember recent query results, at least
until those records “expire”.

• This decentralises the DNS “database” across millions of servers.

• The root server is only queried when a domain name, and its parent
zone, are not cached in local name caches

• But name servers don’t remember domain names that don’t exist

• The vast majority of the queries that are passed to the root zone
servers (some 2/3 of root queries) generate a “no-such-name”
(NXDOMAIN) response from the root system

How to be Bad

13

Caching ensures that the DNS is distributed

and highly robust.

To attack the root servers you need to get past

DNS resolver caches.

This can be done by having every query in the

DNS attack flow ask for a different non-existent

name

This is easy to do!

14

Root Servers are a highly visible

attack target

15

Root Servers are a highly visible

attack target

16

Root Servers are a highly visible

attack target

If you can prevent resolvers from getting answers from

the root then the resolvers will stop answering queries

as their local cache expires

17

Root Servers are a highly visible

attack target

If you can prevent resolvers from getting answers from

the root then the resolvers will stop answering queries

as their local cache expires

18

Root Servers are a highly visible

attack target

If you can prevent resolvers from getting answers from

the root then the resolvers will stop answering queries

as their local cache expires

How should we defend the Root?

• Larger Root Server platforms?

• More Root Server Letters?

• More Anycast Instances?

• Change Root Server response behaviours?

• Or…

19

How should we defend the Root?

• Larger Root Server platforms?

• More Root Server Letters?

• More Anycast Instances?

• Change DNS behaviour?

• Or…

20

* DDoS attacks are growing faster than upgrades can

handle

How should we defend the Root?

• Larger Root Server platforms?

• More Root Server Letters?

• More Anycast Instances?

• Change DNS behaviour?

• Or…

21

* Limit of 13 distinct servers within UDP packet constraint.

In any case more letters will not help!

How should we defend the Root?

• Larger Root Server platforms?

• More Root Server Letters?

• More Anycast Instances?

• Change DNS behaviour?

• Or…

22

Anycast Root Servers

12 of the 13 root server “letters” operate some form of
“anycast” server constellation.

– All the servers in a constellation respond to the same public IP
addresses.

– The routing system will direct queries to the “closest” member of the
letter’s anycast constellation.

Anycast provides…
– Faster responses to queries to the root for many DNS resolvers

– Greater resilience by load sharing widely distributed attacks across
the entire anycast constellation

www.root-servers.org

24

Anycast Root Servers

As the traffic to the root servers increases due to natural

growth and increasing attacks, we keep on adding more

instances to the existing anycast clouds

The attacks get bigger

26

Our defence is bigger walls

27

What are we doing?

We’re scaling the DNS root server

infrastructure in order to be resilient

against queries from the existing DNS

resolvers.

And those DNS resolvers are being

scaled to survive the very same query

attacks that are being directed against

them!

A vicious circle.

28

How should we defend the Root?

• Larger Root Server platforms?

• More Root Server Letters?

• More Anycast Instances?

• Change DNS behaviour?

• Or…

29

DNSSEC changes Everything

Before DNSSEC we assumed (hoped) that we asked an IP

address of a root server, then the response was genuine

With DNSSEC we can ask anyone, and then use DNSSEC

validation to assure ourselves that the answer is genuine

How can we use this?

Local Root Secondaries – RFC 7706

Caching NXDOMAIN responses?

If we could answer NXDOMAIN queries from recursive

resolvers we could reduce the load on the root servers by

close to 70%

This would be a very significant win
– reducing root query traffic

– providing faster response to these queries

– reducing the local cache load on recursive resolvers

NSEC caching – RFC 8198

NSEC caching – RFC 8198

Most of the queries seen at the root are for non-existent domains, and resolvers cache

the non-existence of a given name

But a DNSSEC-signed NXDOMAIN response from the root zone actually describes a

range of labels that do not exist, and it’s the range that is signed, not the actual

query name

If resolvers cached this range and the signed response, then they could use the same

signed response to locally answer a query for any name that falls within the same label

range

This has a similar effect to RFC7706, but without any configuration overhead, nor is

there any requirement for supporting root zone transfers.

NSEC caching

For example, if you were to query the root server for

the non-existant name www.example. the returned

response from the root says that there are NO TLDS

between everbank. and exchange.

The same response can be used to respond to queries

for every TLD between these labels.

So we can cache this range response and use it to

respond to subsequent queries that fall into the

same range

35

Architecturally speaking…

• Rather than have recursive resolvers act as “concentrators”

for DNS queries for non-existent names, NSEC caching

allows these queries to be answered locally

• This approach uses existing DNS functionality and existing

queries – there is nothing new in this.

• The NSEC response to define a range of names, allowing

what is in effect semi-wildcard cache entries that can be

used to respond to a range of query labels

36

Impacts…

• Instead of relying on endless scaling of the root server system, existing

deployed resolvers can help mitigate DNS DDoS attacks

• This will also improve overall DNS efficiency by absorbing most of the

current root query load in the resolvers

• Also, individual resolvers will operate more efficiently in both response

time (for failed queries) and cache performance.

• Win, Win, Win!

37

Coming to a Bind Resolver near you

APNIC has sponsored the inclusion of NSEC caching in the

forthcoming Bind 9.12 release

– Enabled by default.

– Available early 2018

Then…

– To be included in Linux distros

– Replicated in other DNS resolvers?

– Operators must upgrade: OS or Bind, or both

In the meantime

• Anycast rootserver deployment continues
– At request of rootserver operators, since recent attacks

• APNIC working with F, I, K, M
– Especially at neutral IXPs

– Especially in developing countries

• Let APNIC know if we can help

• Stay tuned!

39

40

Thanks

dg@apnic.net

4

