Open Solutions for Packet Optical Networking

Robert Keys
VP Engineering
Juniper Networks
If you are a packet dude, consider yourself lucky

If you are an optical dude, consider yourself behind the times
We are working to reverse that frown

Open packet optical networking Drive open interfaces and interoperability

Simplified networking, lower cost of operations
Presentation objective

• The aim of this presentation is to introduce the audience to the emerging trend for open packet optical networking.

• New industry working bodies are emerging to champion this approach – openROADM, TIP, Openconfig etc.

• We will review the trend and the work on going for the audience to gain a quick tutorial on the trend.
Agenda

• Industry pivots and market adoption of open packet optical networking
• Open packet optical networking defined
• Industry collaboration – standards bodies
• The new standards bodies – openROADM, TIP
• Stepping on each others toes?
• Bringing it together demos
• Find out more
DWDM: increasing capacity between routers

- DWDM allows for N “independent” connections between the routers, but using a single duplex fiber connection between sites.
DWDM Optical path switching: ROADM

- **ROADM** (*Reconfigurable Optical Add Drop Multiplexer*)
 - Optical switching in a network
 - Moving the wavelengths
Packet-optical competitive landscape is shifting in response to customer cloud business priorities

<table>
<thead>
<tr>
<th>Pre-cloud era competitive battleground</th>
<th>Current competitive landscape</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systems designed for closed telco environments</td>
<td>Systems, software designed for cloud migration</td>
</tr>
<tr>
<td>Performance of vertically integrated DSPs and Photonics</td>
<td>Driving hardware cost efficiencies</td>
</tr>
<tr>
<td>Tightly coupled network control and data planes</td>
<td>Ability to disaggregate key functions</td>
</tr>
<tr>
<td>CLI, EMS features enabling flexible configuration</td>
<td>Rich open API’s enabling network programmability</td>
</tr>
<tr>
<td>Transponder and ROADM sold, deployed together</td>
<td>Easy decoupling of transponder and line system</td>
</tr>
</tbody>
</table>
The prototypical buyers of packet optical

<table>
<thead>
<tr>
<th>Integrated Buyer</th>
<th>Disaggregated Buyer</th>
</tr>
</thead>
<tbody>
<tr>
<td>View the network as revenue – Infrastructure which is their business</td>
<td>View the network as COGS – infrastructure on which to run their business</td>
</tr>
<tr>
<td>Buys an integrated system built from tightly coupled solution components for a designated purpose</td>
<td>Buys loosely coupled solution components for fungibility</td>
</tr>
<tr>
<td>Builds infrastructure to meet relatively stable and / or predictable network demands</td>
<td>Builds a network to scale for relatively variable and / or uncertain capacity demands</td>
</tr>
<tr>
<td>Values strong vendor / supplier partnership to deliver a system to meet E2E performance requirements</td>
<td>Very little vendor / brand preference</td>
</tr>
<tr>
<td>Relies on vendors and service partners for solution & management integration</td>
<td>DIY for solution and management integration</td>
</tr>
</tbody>
</table>

Spectrum of buyer characteristics

TELCO like
CLOUD like
Market drivers & adoption

Open Line System Drivers

<table>
<thead>
<tr>
<th>Reason</th>
<th>Percent of Open Line System Respondents Rating “Strong Driver”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduce reliance on a single vendor</td>
<td>65%</td>
</tr>
<tr>
<td>Less capex—better negotiating power over suppliers results in cheaper hardware</td>
<td>53%</td>
</tr>
<tr>
<td>Better performance—allows selection of best in class components for each function</td>
<td>53%</td>
</tr>
<tr>
<td>Decouples individual hardware components from fixed hardware release cycles</td>
<td>53%</td>
</tr>
<tr>
<td>Less opex—faster to install and maintain</td>
<td>35%</td>
</tr>
<tr>
<td>Better suited to our network management model</td>
<td>24%</td>
</tr>
</tbody>
</table>

Source: IHS Markit 100G+ & ROADM Strategies Global Service Provider Survey; December 2016

Open Line System Deployment Timing

- 2019 or later: 29%
- 2018: 30%
- Already deployed: 6%
- Don’t know: 35%
Agenda

• Industry pivots and market adoption of open packet optical networking

• Open packet optical networking defined

• Industry collaboration – standards bodies

• The new standards bodies – openROADM, TIP

• Stepping on each others toes?

• Bringing it together demos

• Find out more
Open packet optical networks defined

Aggregated

- Entire network acts as a single managed system

Dis-aggregated

- Transponder is an element; OLS is a separate element
- Every box is a separate element

Traditional: closed end to end proprietary solution; Vendor lock in; proprietary SW

Option 1: have an optical line system from vendor A and the transponders from any vendor

Option 2: make the optical line elements interoperate and buy and deploy from any vendor

Move to open HW and open SW allows system company to break the mould of closed systems and vendor lock in; good for them and good for industry
There are many standards bodies

There is a whole lot of effort going into making components etc standard
Now we are turning our attention to making the solutions interoperable and open
System perspectives to drive open networking

ONF TAPI
- Protocol between orchestrator and optical controllers and NMS
- Vendor Driven
- UML source

IETF TE Topo
- Models L1 transport topology and connectivity parameters

AT&T OpenROADM
- ROADM focused
- Limited Operator Support
- No Flex Grid support

Google OpenConfig
- Focus on Routers, but optical devices also included.
- Configuration and Telemetry only
- Significant Operator Support
The new groups driving industry collaboration

- Open ROADM
- Telecom Infra project
- ONF
- Open config
- ON2020
OpenROADM

TODAY’S ROADM SYSTEMS REQUIRE A SINGLE VENDOR WITH TIGHT COUPLING OF PROPRIETARY SOFTWARE (EMS AND PLANNING TOOLS)

Need to be able to overbuild metros on a office-by-office basis

Need for open, standardized interfaces and much less proprietary SW
Introduction

• OpenROADM is a multi-source agreement (MSA) between multiple manufacturers to make products which are compatible across vendors, acting as de facto standards, establishing a competitive market for interoperable Optical products.

• Established in Spring of 2015, a successful plugfest in February 2016 resulted in the publishing of the specifications.
Objectives

• The Open ROADM project has at its core
 • the drive towards faster pace innovation and competition
 • as well as increased volumes through mass adoption
 • coupled with optical layer flexibility and software control to overcome all the disadvantages of today's ROADM system

• This will be achieved through a common
 • NETCONF/YANG APIs between all components and a Controller
 • Multi-wave Interface between ROADM
 • Single-Wave Interface between transponders or pluggable optics
In openROADM networking companies and providers of networking equipment are working co-operatively to create useable operational models for open networking.
Deliverables (Q22017)

• Optical Specification - Single Wavelength and Multi Wavelength (v1.07)

• OpenROADM YANG Model (v2.0)
 • New features include support for OTN protection, FlexGrid, in-line amplifier for reach extension and a new I2RS-compliant Network abstraction model

• Documentation suite
 • OpenROADM Overview (v1.0)
 • OpenROADM Model Whitepaper (v1.0)
 • OpenROADM Network Model Overview (v1.1)
Telecom Infra Project

Access
- System integration and optimization
- Unbundled Solutions
- Media-friendly solutions

Backhaul
- High-frequency autonomic access
- Open optical packet transport

Core and Management
- Core Network Optimization
- Greenfield Telecom Networks
Telecom Infra Project

What we try to accomplish!

Many exciting challenges ahead of us:

- Connecting the un-connected billions requires a global effort
- Connectivity in times of cloud and social networking changes dramatically towards SDN & programmability and sheer data consumption
- The industry does not deliver at the innovation speed that we need to!

How we try to accomplish!

- Break-up a stove-piped industry from vertical to horizontal
- Enable new innovation paradigms with lower barrier of entrance and faster adoption
- Enable the Sw model for S/R/T — SDN!
- Re-use DC technologies for the WAN
- Enable an eco-system of creativity and adoption by focusing the valuable R&D resources on innovation

Open Optical Packet Transport Group

Define Dense Wavelength Division Multiplexing (DWDM) open packet transport architecture, that triggers new pace of technology innovation and flexibility, and avoids implementation lock-ins.

Essentially we are dealing with opening up: Switching, Routing and Transport (S/R/T)
TIP open line system

Open Line Systems already exist. Need a common agreement on what that means.
Stepping on each others toes?

We are all working together Great progress. Need to ensure that we sweat the details and create a single model. Or at least models that are aligned, especially in SW / API’s.
OpenROADM Trials

• Spring 2015 – Plugfest
 • Initial Members only
 • v1.0 of the specification

• AT&T December 2016
 • The operator used a 100-gigabit optical wavelength in its Dallas area network to connect two IP-MPLS routers using transponders and ROADMs from multiple optical equipment vendors

• Orange Q2 2017
 • Orange is targeting its own lab trials in the first half of this year using a simplified OpenDaylight SDN controller working with ROADMs from three systems vendors. “We want to showcase the technology and prove the added value of an open ROADM,” says Xavier Pougnard.
TIP – operator trials

Why Voyager Transponder at Equinix?
Equinix Wants to Enable and Foster Innovation

• Equinix supports a disaggregated hardware and software model that will speed up innovation for network components and technology.
• Equinix wants to be the place where hardware and software vendors come together with major service providers to create a TIP ecosystem.
• Equinix is creating a new data center design support model for this type of hardware to enable network and cloud service providers to interconnect and grow the TIP ecosystem.
Open line system consists of hybrid Raman/EDFA for long spans, EDFA only for shorter spans, and flex-grid ROADMs

- 8QAM transmission over 2000km LEAF fiber, 104 channels total, 37.5GHz spacing
- 16QAM transmission over 1000km LEAF fiber, 104 channels total, 37.5GHz spacing
2017 OIF T-SDN Demo

• Targeting Service Provisioning utilizing common API between transport controller and higher layer controller or orchestrator.
• Includes NFV element for inclusion in ETSI NFV POC.
Conclusion

• Great progress in driving interoperability and open standards into the optical domain
• We are still in early days
• But, please consider open packet optical networking as you plan your next packet optical transport solution
• Forget about legacy design rules
• Embrace the “cult of the open”

Momentum is building
I look forward to seeing more open packet optical networking in your RFP’s
Find out more

• openROADM
 • http://www.openroadm.org/home.html

• Telecom Infra Project
 • https://telecominfraproject.com
Dr. Robert Keys is currently Vice President Engineering at Juniper Networks. His focus is on driving packet optical network transformation. He joined Juniper Networks through their acquisition of BTI Systems in 2016 where he served as Chief Technology Officer and Senior Vice President of Product Management. He has over 20 years of communications engineering and leadership experience and prior to joining BTI Systems Robert served as Chief Engineer at Bookham (now Oclaro), and held various influential roles in the development organization at Nortel, where he was responsible for the successful development and delivery of multiple optical products to market. He has more than 12 patents granted in the area of optical communications. Robert has a Ph.D & M.Sc in Electronics and Electrical Engineering and a B.Sc in Physics from the University of Glasgow.

Contact

rkeys@juniper.net
+1 613 878 8900