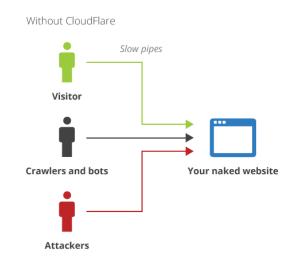
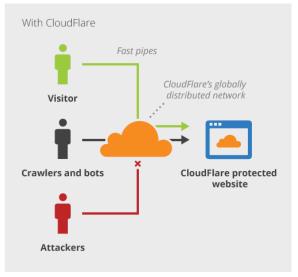


Combating DDoS and why peering is important in Asia


Marty Strong


HKNOG 2.0 - Hong Kong 14th September 2015

What is CloudFlare?

CloudFlare makes websites faster and safer using our globally distributed network to deliver essential services to any website

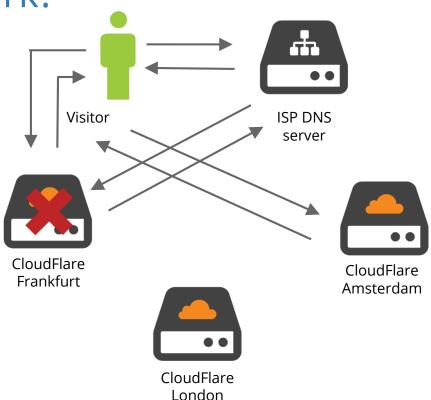
- Performance
- Content
- Optimisation
- Security
- 3rd party services
- Analytics

How does CloudFlare work?

CloudFlare works at the network level

Once a website is part of the CloudFlare community, its web traffic is routed through our global network of 30+ data centres.

 At each edge node, CloudFlare manages DNS, caching, bot filtering, web content optimisation and third party app installations.

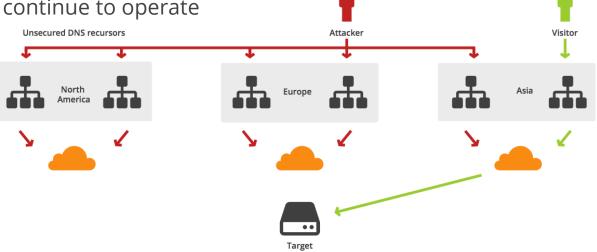

How does CloudFlare work?

How does it work?

- DNS Query to anycast DNS address
- DNS result returned with Anycast IP
- Client makes connection to returned IP
- CloudFlare replies, session established

What happens in the event of an outage?

- Anycast prefixes are withdrawn from problematic PoP
- Traffic re-routes to next closest PoP
 - TCP session resets at this point



CloudFlare works globally

CloudFlare protects globally

 DDoS attack traffic is localised and lets other geographic areas continue to operate

Why do we peer?

Why do we peer?

"In <u>computer networking</u>, peering is a voluntary interconnection of administratively separate <u>Internet</u> networks for the purpose of exchanging traffic between the users of each network."

- To improve performance (reduce hop count, reduce latency etc.)
- To reduce costs
- To ensure anycast traffic lands locally
- To gain more control over routing
- To gain more control of DDoS traffic

Where do we peer?

Where do we peer?

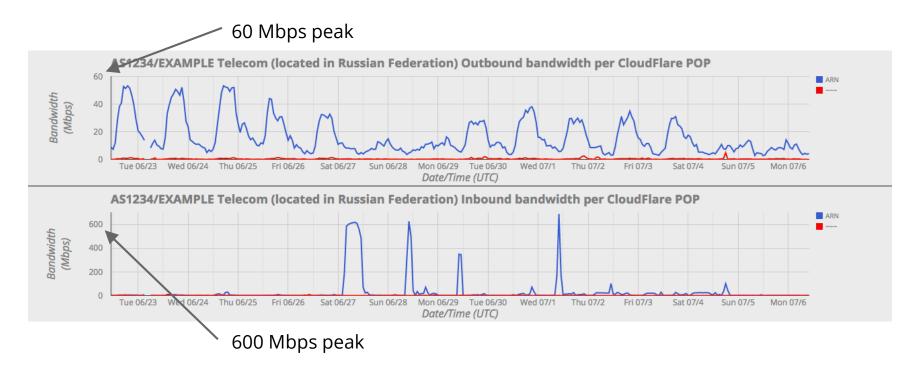
- AKL-IX (Auckland)
- APE (Auckland)
- BBIX (Tokyo, Osaka, Singapore)
- Equinix (Hong Kong, Osaka, Singapore, Sydney, Tokyo)
- HKIX (Hong Kong)
- IX Australia (Melbourne, Sydney)
- JPIX (Tokyo, Osaka)
- JPNAP (Tokyo, Osaka)
- Megaport (Auckland, Singapore, Sydney)
- MylX (Kuala Lumpur)
- PIPE (Melbourne, Sydney)

Plus many more @ http://as13335.peeringdb.com

What is a DDoS attack?

What is a DDoS attack?

According to WikiPedia:


"In computing, a **denial-of-service** (**DoS**) **attack** is an attempt to make a machine or network resource unavailable to its intended users. This could be CPU resources, but often involves efforts to temporarily or indefinitely interrupt or suspend services of a host connected to the Internet. A **distributed denial-of-service** (**DDoS**) is where incoming traffic comes from more than one - and often thousands - of unique IPs, either from botnets or via various types of reflection attack."

https://en.wikipedia.org/wiki/Denial-of-service_attack

Learn more here: https://www.cloudflare.com/ddos

DDoS network

DDoS network

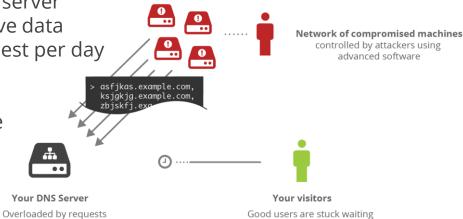
- Our usual traffic ratio to eyeball ISPs is around 1:20 inbound:outbound
- However the ratio from the previous slide was 10:1 inbound:outbound
- The attacks shown on the graph are highly likely part of a much bigger global DDoS

How do we connect to this ISP?

AS1234 / EXAMPLE Telecom												
IXP		DESCRIPTION	ASN	ROUTER	IF		Gbps	ı	Pv4		IPv6	
DE-CIX Frankfurt		Example,RU	AS1234	edge01.fra02	ae2	.0	:	✔ 80.81.194.	8/126 6d00h	✓ 2001:7f8::		17/2 16d01h
AMS-IX		Example,RU	AS1234	edge01.ams01	ae3	.0	:	✓ 80.249.209.	1,401/125 9d23h	✓ 2001:7f8:		9d23h
Netnod Stockholm	+	Example,RU	AS1234	edge01.arn01	irb	.15	0.00:0.00	✓ 194.68.128.	1/160 20d01h	2001:7f8:		
LINX Juniper LAN	**	Example,RU	AS1234	edge01.lhr01	ae3	.0	0.00:0.00	✓ 195.66.225.	1,391/164 17d23h	✓ 2001:7f8:		29/4 1m09d

DDoS look-and-feel

DNS Attacks look different


- Layer-7 attacks (hitting the application layer)
- Purpose: exhaust the CPU (vs. bandwidth)

Malicious payload

- Request sent to exploit vulnerability on server
- Purpose: gain control or release sensitive data
- CloudFlare WAF blocks ~1.2 billion request per day

Volumetric attack

- Send as many small packets as possible
- Purpose: overwhelm the router ports

Why run 1,000s and 1,000s of servers?

Geography

- Spread the load for both content delivery and DDoS processing
- Allows us to distribute the attack more effectively
- Allow specific attack sources to be isolated

In-PoP load balancing

Allows us to ensure no one server bears the entire brunt of an attack

Externally presented IP addresses

One IP can map to 100s (or 1000s) of servers

This isn't just one server

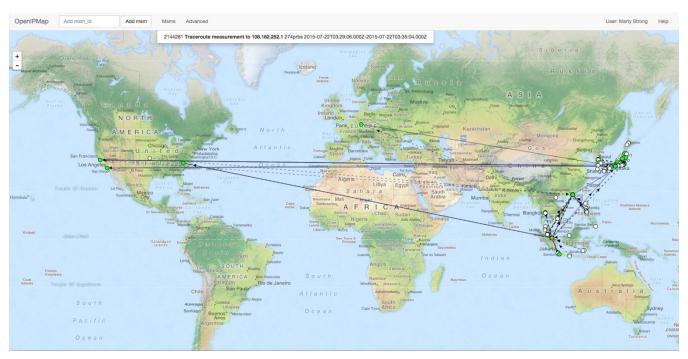
```
$ host bob.ns.cloudflare.com
bob.ns.cloudflare.com has address 173.245.59.104
bob.ns.cloudflare.com has IPv6 address 2400:cb00:2049:1::adf5:3b68
```


Anycast routing

- You can't guarantee which path ISPs will take
- Routing is down to the eyeball ISP
- There are a small number of ways to influence it
 - Use BGP communities to adjust announcements (e.g. do not announce to ASN X)
 - Use AS-Path prepending
 - Peer with ISPs

What if there was no peering?

- You are reliant on your transit carriers' routing and interconnection with other providers
- Performance could be affected (long path, more hops etc.)
- Higher likelihood of sporadic changes

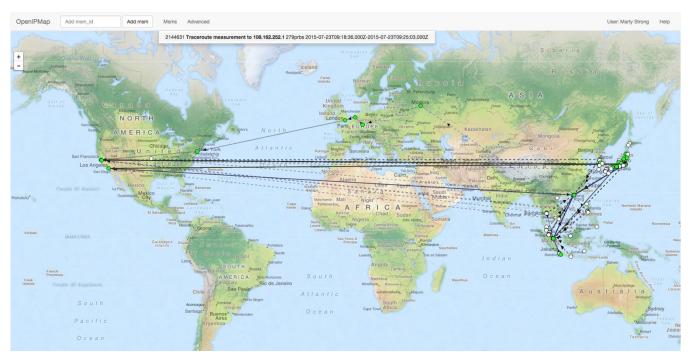

Why is this so important in Asia?

Let's test: Methodology

- Take an IP prefix it and announce it in multiple locations (anycast)
 - Singapore
 - Hong Kong
 - Toyko
 - Osaka
- Do this separately for each provider in use (NTT, Tata, Pacnet)
- Make RIPE Atlas measurement
 - Probes from HK, ID, JP, KR, MY, PH, SG, TH, VN

Let's test: NTT (AS2914)

https://marmot.ripe.net/openipmap/tracemap?msm_ids=2144281&show_suggestions=1&max_probes=274


Let's test: NTT (AS2914)

emove							
10p IP	ASN	hostname	location	RTTs			
1 203.30.39.254	23855	(none)			0.7 7.9 0.5		
2 202.147.33.137	10026	Gi2-0-403.gw2.sin1.asianetcom.net	Singapore,,SG	ok	0.5 0.4 0.4		
3 61.14.157.113	10026	te0-0-2-0.wr2.sin0.asianetcom.net	Singapore,,SG	ok	4.7 1.4 1.7		
4 61.14.157.62	10026	te0-0-2-0.wr2.osa0.asianetcom.net	Osaka,Ōsaka,JP	ok	176.6 177.3 177.7		
5 202.147.50.197	10026	te0-0-0-4.gw3.sjc1.asianetcom.net	San Jose,California,US	ok	177.9 177.9 177.8		
6 213.248.83.113	1299	sjo-b21-link.telia.net	San Jose,California,US	ok	178.1 178.0 179.2		
7 62.115.44.46	1299	ntt-ic-306350-sjo-b21.c.telia.net	San Jose,California,US	ok	186.3 186.4 186.4		
8 129.250.4.25	2914	ae-4.r23.snjsca04.us.bb.gin.ntt.net	San Jose,California,US	ok	194.1 186.2 186.0		
9 129.250.2.131	2914	ae-6.r21.osakjp02.jp.bb.gin.ntt.net	Osaka,Ōsaka,JP	ok	361.8 361.8 361.8		
10 129.250.6.144	2914	ae-5.r23.osakjp02.jp.bb.gin.ntt.net	Osaka,Ōsaka,JP	ok	368.2 370.2 396.1		
11 129.250.3.199	2914	ae-2.r01.osakjp02.jp.bb.gin.ntt.net	Osaka,Ōsaka,JP	ok	370.0 371.1 370.1		
12 108.162.252.1	13335	(none)			199.1 199.1 199.0		

https://marmot.ripe.net/openipmap/tracemap?msm_ids=2144281&show_suggestions=1&max_probes=274

Let's test: Tata (AS6453)

https://marmot.ripe.net/openipmap/tracemap?msm_ids=2144631&show_suggestions=1&max_probes=274


Let's test: Tata (AS6453)

remove					
hopIP	ASN hostname		location	RTTs	
1 192.168.25.1	(RFC1918)	(none)			16.3 0.8 0.8
2 175.115.120.1	9318	(none)			3.8 3.7 3.8
3 211.58.43.121	9318	(none)			1.6 1.5 1.6
4 114.207.86.97	9318	(none)			1.3 1.3 1.3
5 1.255.23.53	9318	(none)			5.8 5.6 5.9
6 118.221.7.26	9318	(none)			3.2 5.5 5.8
7 58.229.15.226	9318	(none)			37.5 37.4 37.4
8 80.239.160.169	1299	hnk-b2-link.telia.net	Hong Kong,,HK	ok	159.6 159.8 159.5
9 62.115.138.118	1299	las-b21-link.telia.net	Los Angeles,California,l	ok	155.8 154.5 154.4
10 213.155.134.251	1299	las-b3-link.telia.net	Los Angeles,California,l	ok	154.1 154.0 154.0
11 66.110.59.65	6453	ix-23-0.tcore1.LVW-Los-Angeles.as6453.net	Los Angeles,California,l	ok	178.9 179.0 179.0
12 66.110.59.2	6453	if-2-2.tcore2.LVW-Los-Angeles.as6453.net	Los Angeles,California,l	ok	266.0 265.6 265.8
13 66.110.59.62	6453	if-12-2.tcore2.TV2-Tokyo.as6453.net	Tokyo,Tōkyō,JP	ok	265.5 265.5 265.3
14 108.162.252.1	13335	(none)			154.3 153.9 153.8

https://marmot.ripe.net/openipmap/tracemap?msm_ids=2144631&show_suggestions=1&max_probes=274

Let's test: Pacnet (AS10026)

https://marmot.ripe.net/openipmap/tracemap?msm_ids=2176427&show_suggestions=1&max_probes=274

Let's test: Pacnet (AS10026)

remove							
hopI	P	ASN	hostname	location		RTTs	
1 20	08.69.37.1	36692	rtr1.nrt.opendns.com	Tokyo,Tōkyō,JP	ok	17.9 0.4 0.5	
2 18	83.182.80.145	3257	ge-3-0-1.tyo10.ip4.gtt.net	Tokyo,Tōkyō,JP	ok	0.4 0.4 0.4	
3 14	41.136.111.133	3257	xe-4-3-1.sjc12.ip4.gtt.net	San Jose,California,US	ok	109.1 108.8 109.8	
4 7	7.67.68.234	3257	pacnet-gw.ip4.gtt.net		ok	109.3 109.2 109.4	
5 20	02.147.50.134	10026	gi9-0-0.cr2.nrt1.asianetcom.net	Tokyo,Tōkyō,JP	ok	211.6 211.8 211.4	
6 20	02.147.0.182	10026	ge-2-1-0-0.gw3.nrt5.asianetcom.net	Tokyo,Tōkyō,JP	ok	219.1 212.7 211.7	
7 10	08.162.252.1	13335	(none)			106.7 109.9 106.7	

https://marmot.ripe.net/openipmap/tracemap?msm_ids=2176427&show_suggestions=1&max_probes=274

How is this related to ingesting DDoS attacks?

- By utilising multiple transit carriers and peering extensively you have path diversity i.e. multiple ports that will ingest the attack
- You can geographically separate traffic
- There are less collateral issues caused to upstream backbones

Thank you!

Questions?

http://as13335.peeringdb.com/

AS13335 | Marty Strong, Network Engineer @martystronguk / @cloudflare marty@cloudflare.com https://www.cloudflare.com/

